Número total de visualizações de páginas

domingo, 10 de abril de 2011

Reacções auto-imunes

Por vezes o sistema imunitário não funciona correctamente, interpreta que os tecidos do corpo são estranhos e, como consequência, ataca-os, provocando uma reacção auto-imune. As reacções auto-imunes podem ser desencadeadas de várias maneiras:
  • Uma substância corporal que habitualmente fica estritamente confinada a uma área específica (e, por consequência, escondida do sistema imunitário) é libertada na circulação sanguínea. Por exemplo, o líquido do globo ocular limita-se, normalmente, às câmaras do olho. Se uma pancada no olho libertar aquele líquido para a corrente sanguínea, o sistema imunitário poderá reagir contra ele.
  • Uma substância corporal normal é alterada. Por exemplo, os vírus, os medicamentos, a luz solar ou as radiações podem modificar a estrutura de uma proteína até ao ponto de a fazer parecer estranha.
  • O sistema imunitário responde a uma substância estranha que tem uma aparência semelhante a uma substância natural do corpo e ataca involuntariamente tanto as substâncias do corpo como as estranhas.
  • Algo funciona mal nas células que controlam a produção de anticorpos. Por exemplo, os linfócitos B cancerosos podem produzir anticorpos anormais que atacam os glóbulos vermelhos.
Os resultados de uma reacção auto-imune variam. É frequente o indivíduo ter febre. Vários tecidos podem ficar destruídos, tais como vasos sanguíneos, cartilagem e pele. Virtualmente todos os órgãos podem ser atacados pelo sistema imunitário, incluindo os rins, os pulmões, o coração e o cérebro. A inflamação e o prejuízo causado nos tecidos podem causar insuficiência renal, problemas respiratórios, funcionamento cardíaco anormal, dor, deformação, delírio e morte.
Um grande número de afecções têm, quase certamente, uma origem auto-imune, incluindo o lúpus (lúpus eritematoso sistémico), a miastenia grave, a doença de Graves, a tiroidite de Hashimoto, o pênfigo, a artrite reumatóide, a esclerodermia, a síndroma de Sjögren e a anemia perniciosa.

A imunidade e a resposta imune

O sistema imunitário configurou uma rede complexa de procedimentos que se podem dividir em duas categorias: imunidade inata (natural) e aprendida (adquirida).
Todas as pessoas nascem com imunidade inata. Os componentes do sistema imunitário que participam na imunidade inata (macrófagos, neutrófilos e sistema do complemento) reagem de forma semelhante perante todas as substâncias estranhas, e o reconhecimento dos antigénios não varia de pessoa para pessoa.
Como o seu nome indica, a imunidade aprendida é adquirida. Na altura do nascimento, o sistema imunitário de uma pessoa ainda não foi confrontado com o mundo exterior nem começou ainda a desenvolver os seus arquivos de memória. O sistema imunitário aprende a responder a cada novo antigénio com que se confronta. Como consequência, a imunidade aprendida é específica dos antigénios que a pessoa encontra ao longo da sua vida. O traço característico da imunidade específica é a capacidade de aprender, adaptar-se e recordar.
O sistema imunitário faz um registo ou memória de cada antigénio que a pessoa encontre, quer seja através dos pulmões (ao respirar), do intestino (ao comer) ou da pele. Isso é possível porque os linfócitos têm uma vida longa. Quando os linfócitos encontram um antigénio pela segunda vez, a sua resposta face a ele é enérgica, rápida e específica. Essa resposta imune específica explica porque é que não se contrai varicela ou sarampo mais do que uma vez ao longo da vida, assim como o motivo pelo qual as vacinas previnem as doenças. Por exemplo, para evitar a poliomielite, um indivíduo recebe uma vacina feita a partir de uma forma atenuada do poliovírus. Se, posteriormente, esse indivíduo for exposto ao poliovírus, o seu sistema imunitário procura nos seus arquivos de memória, encontra os «dados» desse vírus e activa rapidamente as defesas apropriadas. O resultado é que o poliovírus é eliminado por anticorpos específicos que neutralizam o vírus antes mesmo de ele ter a oportunidade de se multiplicar ou de invadir o sistema nervoso.
A imunidade inata e a imunidade aprendida não são independentes uma da outra. Cada sistema actua em relação com o outro e influi sobre ele, directa ou indirectamente, através da indução de citocinas (mensageiros). Raramente um estímulo desencadeia uma só resposta. O que faz é iniciar várias, algumas das quais podem actuar conjuntamente ou ocasionalmente competir entre si. De qualquer forma as respostas dependem sempre dos três princípios básicos do reconhecimento, da mobilização e do ataque.
Reconhecimento
Antes de o sistema imunitário poder responder face a um antigénio, deve ser capaz de o reconhecer. E, com efeito, pode fazê-lo através de um processo denominado de processamento de antigénios. Os macrófagos são as maiores células processadoras de antigénios, porém existem outras células, incluindo oslinfócitos B, que também o podem fazer.
As células processadoras de antigénios absorvem um antigénio e cortam-no em pequenos fragmentos. Em seguida, estes fragmentos são colocados dentro das moléculas do complexo major de histocompatibilidade e lançados para a superfície da membrana celular. A área do complexo major de histocompatibilidade que contém os fragmentos de antigénio liga-se depois (adere) a uma molécula especial da superfície do linfócito T chamada receptor da célula T. O receptor da célula T está configurado para se encaixar (como uma chave numa fechadura) na parte do complexo major de histocompatibilidade que transporta um fragmento do antigénio.
Os linfócitos T compreendem dois grandes subgrupos que diferem na sua capacidade de se unirem (aderirem) a uma das duas classes de moléculas do complexo major de histocompatibilidade. O subgrupo de linfócitos T com uma molécula CD8 na sua superfície pode ligar-se a moléculas do complexo major de histocompatibilidade da classe I. O subgrupo de linfócitos T com uma molécula CD4 na sua superfície pode ligar-se a moléculas do complexo major de histocompatibilidade da classe II.
Mobilização
Uma vez que uma célula processadora de antigénios e um linfócito T tenham reconhecido um antigénio, uma série de factos inicia a mobilização do sistema imunitário. Quando uma célula processadora de antigénios absorve um antigénio, liberta citocinas (por exemplo, interleucina-1, interleucina-8 ou interleucina-12) que actuam sobre outras células. A interleucina-1 mobiliza outros linfócitos T; a interleucina-12 estimula as células NK (natural killer, assassinas naturais) para que sejam ainda mais potentes e segreguem interferão; a interleucina-8 actua como uma espécie de «faro» que guia os neutrófilos em direcção ao local onde foi encontrado o antigénio. Este processo de atracção e recrutamento de célulasrecebe o nome de quimiotaxia.
Quando os linfócitos T são estimulados através dos seus receptores de células T, produzem várias citocinas que ajudam a recrutar outros linfócitos, o que amplifica a resposta imune. As citocinas também podem activar as defesas imunitárias não específicas (inatas). Actuam consequentemente como uma ponte entre a imunidade inata e a adquirida.
Ataque
Grande parte dos instrumentos do sistema imunitário tem a finalidade de matar ou eliminar os micróbios invasores uma vez que tenham sido reconhecidos. Os macrófagos, os neutrófilos e as células NK são capazes de eliminar muitos invasores.
Se um invasor não puder ser eliminado por completo, podem ser construídas paredes para o aprisionar. Essas paredes são formadas por células especiais e recebem o nome de granulomas. A tuberculose é um exemplo de uma infecção que não é completamente eliminada; as bactérias que causam tuberculose ficam presas dentro de um granuloma. A maioria das pessoas saudáveis quando expostas a estas bactérias rechaça a infecção causada pela tuberculose, porém algumas bactérias sobrevivem indefinidamente, geralmente no pulmão, rodeadas de um granuloma. Se o sistema imunitário enfraquece (inclusivamente 50 ou 60 anos mais tarde), as paredes da prisão desmoronam-se e as bactérias que causam a tuberculose começam a multiplicar-se.
O corpo não combate todos os invasores da mesma forma. Os que permanecem fora das células do corpo (organismos extracelulares) são relativamente fáceis de combater; o sistema imunitário mobiliza defesas para facilitar a sua ingestão pelos macrófagos e outras células. A maneira de o sistema imunitário levar a cabo esse procedimento depende de os invasores serem capsulados (terem uma cápsula espessa à sua volta) ou não. Os invasores que chegam ao interior das células (organismos intracelulares) e permanecem viáveis (vivos) e funcionais são combatidos de maneira completamente diferente.
Como os linfócitos T reconhecem os antigénios
Os linfócitos T fazem parte do sistema imunitário de vigilância. Contribuem para identificar antigénios, que são substâncias estranhas ao corpo. Todavia, para ser reconhecido por um linfócito T, um antigénio deve ser processado e «apresentado» ao linfócito de forma tal que este o possa identificar, como se mostra em seguida.
1. Um antigénio que circula pelo corpo tem uma estrutura que um linfócito T não pode reconhecer.
2. Uma célula processadora de antigénios, como um macrófago, rodeia e ingere o antigénio.
3. Os enzimas da célula processadora de antigénios partem o referido antigénio até o reduzir a fragmentos.
4. Alguns fragmentos de antigénio ligam-se a moléculas do complexo major de histocompatibilidade e são lançados para a superfície da membrana celular.
5. Um receptor de células T, localizado na superfície de um linfócito T, reconhece o fragmento de antigénio ligado a uma molécula do complexo major de histocompatibilidade e adere a ele.
 
Organismos extracelulares capsulados
Algumas bactérias possuem uma cápsula que protege as paredes das suas células e impede que os macrófagos as reconheçam. Um exemplo comum de bactérias capsuladas são os estreptococos, causadores da amigdalite estreptocócica. A resposta imune consiste em fazer que os linfócitos B produzam anticorpos contra aquela cápsula. Os anticorpos também neutralizam as toxinas que certas bactérias produzem.
Uma vez criados, aderem às cápsulas. A unidade bactéria-anticorpo recebe o nome de complexo imune. O complexo imune adere a um receptor sobre um macrófago. Essa união permite que o macrófago absorva todo o complexo e que depois se digiram as bactérias ali mesmo. Os complexos imunes também activam a cascata do complemento. A união de produtos da cascata do complemento com o complexo imune faz com que se torne muito fácil aos macrófagos identificar os complexos imunes que deve ingerir.
Organismos extracelulares não capsulados
Algumas bactérias têm apenas uma parede celular; não têm cápsula e, como consequência, são consideradas não capsuladas. A Escherichia coli, uma causa muito frequente de intoxicação alimentar e de infecções do tracto urinário, é um exemplo de bactéria não capsulada.
Quando as bactérias não capsuladas invadem o corpo, os macrófagos, as células NK, as citocinas e a cascata do complemento põem-se em acção.
Os macrófagos têm sensores que reconhecem as moléculas da superfície das bactérias não capsuladas. Quando as moléculas e os sensores se juntam, a bactéria é rodeada e absorvida pelo macrófago num processo denominado fagocitose. A fagocitose estimula o macrófago a libertar citocinas que atraem neutrófilos. Prontamente esses neutrófilos absorvem e matam muito mais bactérias. Algumas das citocinas libertadas pelos macrófagos activam células NK, que podem de imediato matar directamente algumas bactérias, ou então ajudar quer os neutrófilos, quer os macrófagos a matar de forma mais eficiente.
As bactérias não capsuladas também activam a cascata do complemento. O complemento ajuda a destruir as bactérias e liberta um produto que actua como sinal para atrair neutrófilos, que rapidamente destroem o resto das bactérias.
Organismos intracelulares
Alguns microrganismos, como as bactérias da tuberculose, sobrevivem melhor dentro de uma célula. Dado que estes organismos necessitam de entrar numa célula para viver, não dispõem de nenhuma defesa em particular quando são ingeridos. Uma vez absorvidos, estes organismos ficam sequestrados (encerrados) dentro da célula numa estrutura protectora chamada vesícula (ou vacúolo). As vesículas podem fundir-se com outras dentro do citoplasma, como as vesículas que reúnem e envolvem as moléculas do complexo major de histocompatibilidade da classe II.
À medida que essas vesículas se unem, o complexo major de histocompatibilidade recolhe alguns fragmentos das bactérias. Quando esse complexo é transplantado para a superfície celular, contém esses fragmentos estranhos. As moléculas do complexo major de histocompatibilidade são então reconhecidas pelos linfócitos T, que respondem ao fragmento do antigénio libertando citocinas. As citocinas activam macrófagos. Essa activação determina a produção de novos elementos químicos dentro da célula. Esses elementos químicos permitem finalmente que o macrófago mate os organismos que se encontram dentro da célula.
Algumas citocinas favorecem a produção de anticorpos. Os anticorpos participam activamente na defesa contra organismos localizados fora da célula; são, porém, ineficazes contra as infecções que se verificam dentro desta.
Os vírus são um exemplo de outro organismo que tem de entrar numa célula para poder sobreviver. Contudo, os vírus são processados não em vesículas, mas em estruturas especiais chamadas proteosomas. Os proteosomas partem o vírus em fragmentos que são transportados para outra estrutura, dentro da célula, chamada retículo endoplasmático (a fábrica celular onde são produzidas as proteínas). As moléculas do complexo major de histocompatibilidade da classe I também se reúnem dentro do retículo endoplasmático rugoso. Enquanto se verifica essa reunião, as moléculas recolhem fragmentos de vírus que levam consigo quando são lançadas para a superfície celular.
Certos linfócitos T reconhecem as moléculas da classe I, que agora contêm fragmentos de vírus, e ligam-se a elas. Quando a conexão se completa, um sinal enviado através da membrana celular desencadeia a activação de linfócitos T antigenoespecíficos, a maioria dos quais se convertem depois em células T killer ou citotóxicas. Contudo, diferentemente das células NK (natural killer), as células T citotóxicas só matam as células infectadas com o vírus em particular que estimulou a sua activação. Por exemplo, as células T citotóxicas ajudam a combater o vírus da gripe. A razão pela qual a maioria das pessoas necessita de 7 a 10 dias para recuperar da gripe deriva de ser esse o tempo que demora a gerar células T citotóxicas especialmente concebidas para combater o vírus que causa a referida doença.

Componentes do sistema imunitário

O sistema imunitário é composto por células e substâncias solúveis. As células mais importantes do sistema imunitário são os glóbulos brancos. Os macrófagos, neutrófilos e linfócitos são tipos diferentes de glóbulos brancos. As substâncias solúveis são moléculas que não fazem parte das células, mas que se dissolvem num líquido como o plasma.As substâncias solúveis mais importantes são os anticorpos, as proteínas do sistema do complemento e as citocinas. Algumas substâncias solúveis actuam como mensageiros para atrair e activar outras células. O complexo major de histocompatibilidade (MHC, major histocompatibility complex) é a base do sistema imunitário e ajuda a identificar o que é próprio e o que é estranho.
Macrófagos
Os macrófagos são grandes glóbulos brancos que ingerem micróbios, antigénios e outras substâncias. Um antigénio é qualquer substância que pode estimular uma resposta imune. As bactérias, os vírus, as proteínas, os hidratos de carbono, as células cancerosas e as toxinas podem actuar como antigénios.
O citoplasma dos macrófagos contém grânulos ou massas envoltos por uma membrana e que consistem em variadas substâncias químicas e enzimas. Estas permitem que o macrófago digira o micróbio que tiver ingerido e, em regra, o destrua.
Sistema linfático: defesa contra a infecção
O sistema linfático é uma rede de gânglios linfáticos ligados entre si por vasos linfáticos. Os gânglios linfáticos contêm uma malha de tecido à qual os linfócitos estão estreitamente ligados. Esta rede de linfócitos filtra, ataca e destrói organismos prejudiciais que causam infecções. Os gânglios linfáticos costumam agrupar-se em zonas em que os vasos linfáticos se ramificam, como o pescoço, as axilas e as virilhas.
A linfa, um líquido rico em glóbulos brancos, flui pelos vasos linfáticos. A linfa contribui para que a água, as proteínas e outras substâncias dos tecidos corporais regressem à corrente sanguínea. Todas as substâncias absorvidas pela linfa passam pelo menos por um gânglio linfático e o seu correspondente filtro formado por uma rede de linfócitos.
Outros órgãos e tecidos corporais (o timo, o fígado, o baço, o apêndice, a medula óssea e pequenas aglomerações de tecido linfático como as amígdalas na garganta e as placas de Peyer no intestino delgado) fazem também parte do sistema linfático. Estes tecidos também ajudam o corpo a combater as infecções.
Os macrófagos não se encontram no sangue; na realidade, localizam-se em zonas estratégicas onde os órgãos do corpo contactam com a corrente sanguínea ou com o mundo exterior. Por exemplo, os macrófagos encontram-se onde os pulmões recebem o ar exterior e onde as células do fígado se ligam aos vasos sanguíneos. As células semelhantes do sangue recebem o nome de monócitos.
Neutrófilos
Como os macrófagos, os neutrófilos são grandes glóbulos brancos que absorvem micróbios e outros antigénios e possuem grânulos que contêm enzimas cuja finalidade é destruir os antigénios ingeridos. Todavia, diferentemente dos macrófagos, os neutrófilos circulam no sangue; necessitam de um estímulo específico para abandonar este e entrar nos tecidos.
Os macrófagos e os neutrófilos costumam trabalhar juntos. Os macrófagos iniciam uma resposta imunitária e enviam sinais para mobilizar os neutrófilos, com a finalidade de que se juntem a eles no sector com problemas. Quando os neutrófilos chegam, digerem os invasores e assim os destroem. A acumulação de neutrófilos e a morte e digestão dos micróbios formam o pus.
Linfócitos
Os linfócitos, as principais células do sistema linfático, são relativamente pequenos quando comparados com os macrófagos e os neutrófilos. Ao contrário dos neutrófilos, que não vivem mais de 7 a 10 dias, os linfócitos podem viver durante anos ou décadas. A maioria dos linfócitos divide-se em três categorias principais:
  • Os linfócitos B derivam de uma célula (célula mãe ou precursora) da medula óssea e amadurecem até se converterem em células plasmáticas, que segregam anticorpos.
  • Os linfócitos T formam-se quando as células mães ou precursoras migram da medula óssea para o timo, uma glândula onde se dividem e amadurecem. Os linfócitos T aprendem a distinguir o próprio do estranho no timo. Os linfócitos T maduros abandonam o timo e entram no sistema linfático, onde funcionam como parte do sistema imunitário de vigilância.
  • As células NK (natural killer, assassinas naturais), que são ligeiramente maiores que os linfócitos T e B, recebem este nome porque matam certos micróbios e células cancerosas. O adjectivo «natural» indica que, quando se formam, já estão preparadas para matar diversos tipos de células, em lugar de requerer a maturação e o processo educativo que os linfócitos B e T por seu lado necessitam. As células NK também produzem algumas citocinas, substâncias mensageiras que regulam certas funções dos linfócitos T, dos linfócitos B e dos macrófagos.
Alguns glóbulos brancos que combatem as infecções
Anticorpos
Quando são estimulados por um antigénio, os linfócitos B amadurecem até se converterem em células que formam anticorpos. Os anticorpos são proteínas que interagem com o antigénio que inicialmente estimula os linfócitos B. Os anticorpos também recebem o nome de imunoglobulinas.
Cada molécula de anticorpo tem uma parte idêntica que se liga a um antigénio específico e outra parte cuja estrutura determina a classe do anticorpo. Existem cinco classes de anticorpos: IgM, IgG, IgA, IgE e IgD.
  • A IgM (imunoglobulina M) é o anticorpo que é produzido face à primeira exposição a um antigénio. Por exemplo, quando uma criança recebe a primeira vacina antitetânica, os anticorpos antitétano formam-se 10 a 14 dias mais tarde (resposta primária de anticorpos). A IgM abunda no sangue, mas normalmente não está presente nos órgãos nem nos tecidos.
  • A IgG, o tipo de anticorpo mais frequente, só se produz depois de várias exposições a um antigénio. Por exemplo, depois de receber uma segunda dose de vacina antitetânica (de reforço), uma criança produz anticorpos IgG num lapso de tempo de 5 a 7 dias. Esta resposta secundária de anticorpos é mais rápida e abundante do que a resposta primária. A IgG encontra-se tanto no sangue como nos tecidos. É o único anticorpo que se transmite da mãe para o feto através da placenta. A IgG da mãe protege o feto e o recém-nascido até que o sistema imunitário do bebé possa produzir os seus próprios anticorpos.
  • A IgA é o anticorpo que desempenha um papel importante na defesa do corpo quando se verifica uma invasão de microrganismos através de uma membrana mucosa (superfícies revestidas, como o nariz, os olhos, os pulmões e os intestinos). A IgA encontra-se no sangue e em algumas secreções como as do tubo gastrointestinal e do nariz, dos olhos, dos pulmões e do leite materno.
  • A IgE é o anticorpo que produz reacções alérgicas agudas (imediatas). Neste aspecto, a IgA é o único tipo de anticorpo que aparentemente faz mais mal que bem. Contudo, pode ser importante no momento de combater infecções parasitárias, muito frequentes nos países em vias de desenvolvimento.
  • A IgD é um anticorpo presente em concentrações muito pequenas no sangue que circula pelo corpo. Ainda não está muito bem compreendida a sua função.
Estrutura básica em Y dos anticorpos
Todas as moléculas dos anticorpos têm uma estrutura básica em forma de Y na qual vários elementos se unem através de estruturas químicas chamadas pontes dissulfídicas. Uma molécula de anticorpo divide-se em regiões variáveis e constantes. A região variável determina a que antigénio se unirá o anticorpo. A região constante determina a classe de anticorpo (IgG,IgM,IgD,IgE ou IgA).
Sistema do complemento
O sistema do complemento engloba mais de 18 proteínas. Essas proteínas actuam em cadeia, isto é, uma activa a seguinte. O sistema do complemento pode ser activado por meio de duas vias diferentes. Uma delas, chamada de via alternativa, é activada por certos produtos microbianos ou antigénios. A outra via, chamada clássica, é activada por anticorpos específicos ligados aos seus antigénios (complexos imunes). O sistema do complemento destrói substâncias estranhas, directamente ou em conjunção com outros componentes do sistema imunitário.
Citocinas
As citocinas comportam-se como os mensageiros do sistema imunitário. São segregadas por células do sistema imunitário em resposta a uma estimulação.
As citocinas amplificam (ou estimulam) alguns aspectos do sistema imunitário e inibem (ou suprimem) outros. Foram identificadas já muitas citocinas, no entanto a lista continua a crescer.
Algumas citocinas podem ser injectadas como parte do tratamento para certas doenças. Por exemplo, o interferão alfa é eficaz no tratamento de certos cancros, como a tricoleucemia. Outra citocina, o interferão beta, pode ajudar a tratar a esclerose múltipla. Uma terceira citocina, a chamada interleucina-2, pode ser útil no tratamento do melanoma maligno e do cancro do rim, apesar de o seu uso ter efeitos adversos. Existe ainda outra citocina, chamada factor estimulante das colónias de granulócitos, que estimula a produção de neutrófilos e pode ser utilizada em doentes com cancro que têm uma pequena quantidade de neutrófilos em virtude da quimioterapia.
Complexo major de histocompatibilidade (MHC)
Todas as células têm à sua superfície moléculas que são únicas para cada pessoa determinada. São referidas com a designação de moléculas do complexo major de histocompatibilidade. O corpo pode, através delas, distinguir o que é próprio do que é estranho. Toda a célula que apresente moléculas idênticas do complexo major de histocompatibilidade é ignorada, ao passo que toda aquela que apresentar moléculas não idênticas às do complexo major de histocompatibilidade é rejeitada.
Existem dois tipos de moléculas do complexo major de histocompatibilidade (também chamadas antigénios leucocitários humanos ou HLA): as da classe I e as da classe II. As moléculas do complexo major de histocompatibilidade da classe I estão presentes em todas as células do corpo com excepção dos glóbulos vermelhos. As moléculas do complexo major de histocompatibilidade da classe II estão apenas presentes nas superfícies dos macrófagos e nos linfócitos B e T que tiverem sido estimulados por um antigénio. As moléculas do complexo major de histocompatibilidade das classes I e II de cada pessoa são únicas. Apesar de os gémeos idênticos terem idênticas moléculas de histocompatibilidade, existe uma fraca probabilidade (uma em quatro) de que os gémeos não idênticos tenham moléculas idênticas, enquanto é extraordinariamente baixa para duas pessoas que não sejam filhas dos mesmos pais.
As células do sistema imunitário aprendem a diferenciar o próprio do estranho na glândula do timo. Quando o sistema imunitário se começa a desenvolver no feto, as células mães ou precursoras migram para o timo, onde se dividem até se converterem em linfócitos T. Enquanto a glândula do timo se desenvolve, qualquer linfócito T que reaja face às moléculas do complexo major de histocompatibilidade do timo é eliminado. A todo o linfócito T que tolere o complexo major de histocompatibilidade do timo e aprenda a cooperar com as células que expressam as moléculas únicas do complexo major de histocompatibilidade do corpo é-lhe permitido amadurecer e abandonar o timo.
O resultado é que os linfócitos T maduros toleram as células e os órgãos do corpo e podem cooperar com as outras células do corpo quando elas são chamadas a defender este último. Se os linfócitos T não tolerassem as moléculas do complexo major de histocompatibilidade do corpo, atacá-lo-iam. No entanto, por vezes os linfócitos T perdem a capacidade de diferenciar o próprio do estranho e, como consequência, desenvolvem-se as doenças auto-imunes como o lupus eritematoso sistémico (lúpus) ou a esclerose múltipla. (Ver secção 16, capítulo 167)



Terminologia do sistema imunitário
Anticorpo: uma proteína, fabricada por linfócitos B, que reage perante um antigénio específico; também é chamado de imunoglobulina.
Antigénio: qualquer molécula capaz de estimular uma resposta imune.
Antigénios de leucócitos humanos: um sinónimo do complexo major de histocompatibilidade humana.
Célula: a mais pequena unidade de tecido viva, composta por um núcleo e um citoplasma e rodeada por uma membrana. O núcleo contém ADN e o citoplasma possui estruturas (organelos) que levam a cabo as funções da célula.
Célula NK (natural killer, assassina natural): um tipo de linfócito que pode matar certos micróbios e células cancerosas.
Citocinas: proteínas solúveis, segregadas por células do sistema imunitário, que actuam como mensageiros para ajudar a regular a resposta imune.
Complemento: um grupo de proteínas que ajuda a atacar antigénios.
Complexo major de histocompatibilidade (MHC): um grupo de moléculas importantes que ajuda o corpo a distinguir o que é próprio e o que é estranho.
Endocitose: o processo pelo qual uma célula engloba (ingere) certos antigénios.
Histocompatibilidade: literalmente significa tecido compatível. Utilizada para determinar se um tecido ou órgão transplantado (por exemplo, a medula óssea ou um rim) será aceite pelo receptor. A histocompatibilidade é determinada pelas moléculas do complexo major de histocompatibilidade.
Imunoglobulina: um sinónimo de anticorpo.
Interleucina: um tipo de citocina que actua sobre várias células.
Leucócito: glóbulo branco. Os linfócitos e os neutrófilos, entre outros, são leucócitos.
Linfócito: a célula principal do sistema linfático. Classificam-se em linfócitos B (que produzem anticorpos) e linfócitos T (que ajudam o corpo a distinguir o próprio do alheio).
Macrófago: uma célula grande que absorve (ingere) micróbios uma vez que o sistema imunitário os tenha assinalado para que sejam destruídos.
Molécula: um grupo (agregado) de átomos quimicamente combinados para formar uma única substância química.
Neutrófilo: um grande glóbulo branco (leucócito) que ingere antigénios e outras substâncias.
Péptido: dois ou mais aminoácidos quimicamente unidos para formar uma molécula única.
Proteína: um grande número de aminoácidos quimicamente unidos numa cadeia. As proteínas são péptidos de grande dimensão.
Quimiotaxia: um processo de atracção e recrutamento de células em que estas se deslocam atraídas por uma concentração elevada de uma substância química determinada.
Receptor: uma molécula da superfície celular ou do citoplasma que encaixa noutra molécula como uma chave na sua fechadura.
Resposta imune: a resposta perante um antigénio produzida por componentes do sistema imunitário, quer sejam células ou anticorpos.


Fundamentos da Engenharia Genética

A Engenharia Genética permite manipular directamente os genes de determinados organismos com objectivos práticos.


Tecnologia de DNA recombinante

  • Permite combinar na mesma molécula de DNA genes provenientes de fontes diferentes, mas não necessariamente de espécies diferentes, dando origem a uma molécula de DNA recombinante (DNAr).
  • Baseia-se na utilização de ferramentas moleculares como as enzimas de restrição, as ligases do DNA e os vectores.
      • Enzimas de restrição – reconhecem determinadas sequências de DNA e cortam a molécula nesses locais. As zonas de restrição correspondem a sequências de DNA curtas e simétricas que se lêem da mesma forma nas duas cadeias na direcção 5'-3'.
          • As enzimas de restrição são bastante específicas e ocorrem naturalmente em bactérias. Protegem as bactérias dos ataques dos vírus, uma vez que reconhecem e cortam sequências específicas do DNA viral, inactivando-o. O DNA bacteriano está protegido da actividade das enzimas de restrição.
          • A actividade das enzimas de restrição dá origem a fragmentos de DNA em dupla hélice – fragmentos de restrição - com extremidades em cadeia simples – extremidades coesivas.
          • Verifica-se complementaridade de bases do DNA nas extremidades coesivas de diferentes fragmentos de restrição obtidos com a mesma enzima.
      • As extremidades coesivas emparelham através de ligaçõe sde hidrogénio entre bases complementares e podem unir-se pela actividade de ligases do DNA que catalizam a formação de ligações fosfodiéster.
      • Vector – entidade, constituída por DNA, que transfere o DNA de uma célula ou de um organismo dador para uma célula ou um organismo receptor.
          • Os vectores mais utilizados são os plasmídeos e os bacteriófagos.
          • Os plasmídeos são pequenas moléculas circulares de DNA que ocorrem naturalmente em algumas bactérias, leveduras e células vegetais.
          • Os plasmídeos ligam-se a determinados compostos, tornando-os mais densos, permitindo a sua separação por centrifugação.



  • Processo de obtenção e expressão de uma molécula de DNAr:
    1. Selecciona-se uma molécula de DNA dadora, contendo o gene com interesse que se pretende transferir e clonar, e um vector adequado.
    2. A molécula de DNA e o vector são tratados com a mesma enzima de restrição, que corta as duas moléculas em regiões com a mesma sequência de nucleótidos.
    3. Misturam-se os fragmentos de restrição da molécula de DNA e o vector e juntam-se ligases do DNA. O vector e os fragmentos de restrição emparelham pelas extremidades coesivas, que são complementares, e a ligase estabelece a ligação.
    4. O vector, contendo o DNA dador, é transferido para uma célula ou organismo receptor.
    5. O DNA dador é incorporado no genoma da célula ou organismo receptor, que passa a possuir um DNA recombinante.
    6. Um meio selectivo ou testes químicos permitem identificar as células que exprimem o gene desejado. No processo descrito formam-se fragmentos de restrição que não têm o gene desejado e nem todas as células receptoras incorporam o DNA dador.


DNA Complementar - DNAc

  • Os procariontes são organismos muito utilizados em Engenharia Genética como receptores de DNA estranho porque são fáceis de cultivar, têm um crescimento rápido e processos bioquímicos bem conhecidos. No entanto, não processam o RNAm e, quando recebem genes com intrões, estes não são retirados e a proteína produzida não é funcional.
  • DNA complementar (DNAc) – molécula de DNA sem intrões que é directamente transcrita numa molécula de RNAm funcional. O processo de obtenção de DNAc é o seguinte:
      1. Isola-se uma molécula RNAm funcional das células.
      2. Adiciona-se transcriptase reversa e nucleótidos livres. A transcriptase reversa catalisa a síntese de uma cadeia simples de DNA a partir de um molde de RNAm.
      3. Junta-se uma enzima que degrada o RNAm que serviu de molde e DNA polimerase que catalisa a formação da cadeia complementar do DNA.
  • O DNAc pode ser inserido através de um vector contendo o promotor e sequências reguladoras.
  • Todos os DNAc que se sintetizam a partir do RNA podem ser clonados em bactérias, originando uma biblioteca de DNAc, em que toda a informação (genes que se encontravam a ser transcritos – expressos – num dado momento), fica armazenada em bactérias por longos períodos de tempo, desde que sejam fornecidas todas as condições indispensáveis para a sua manutenção.


Reacção de Polimerização em Cadeia – PCR

  • Técnica que permite amplificar qualquer porção de DNA fora das células.
  • Material necessário:
      • sequências de DNA que se pretende amplificar;
      • um par de iniciadores (primers);
      • os quatro tipos de nucleótidos;
      • uma polimerase DNA (Taq);
      • solução-tampão que impeça variações de pH e que contenha Mg² , ião essencial para a actividade da polimerase.
  • Uma reacção de PCR corresponde a um conjunto de ciclos, envolvendo cada um destes ciclos:
      • Desnaturação da dupla hélice – é conseguida com a incubação do DNA a uma temperatura de 95°C, formando duas cadeias simples a partir de uma dupla cadeia;
      • Emparelhamento dos iniciadores – diminuição da temperatura aproximadamente para os 55°C, para ocorrer a ligação dos primers;
      • Polimerização (síntese) de DNA – ocorre a 70°C, temperatura óptima de actividade da Taq polimerase. Esta liga-se na região dos iniciadores, e promove a polimerização, com elongação da cadeia de DNA, servindo a outra como molde.

      • Este ciclo é repetido dezenas de vezes, para obter milhões de cópias de DNA, em poucas horas e sem intervenção manual. No final, leva à produção de 2^n moléculas de DNA de interesse, em que n representa o número de ciclos.
      • A Taq polimerase é uma polimerase extraída da Thermus aquaticus, uma bactéria que habita fontes termais com água extremamente quente, resistindo às variações de temperatura e contribuindo significativamente para o sucesso da técnica de PCR (o aquecimento para desnaturar as cadeias de DNA provocava a inactivação definitiva da polimerase, obrigando a adicionar mais enzima por ciclo de aquecimento).
  • Um dos aspectos mais negativos desta técnica é a grande sensibilidade ``a contaminação com DNA estranho, podendo ocorrer emparelhamento entre os iniciadores e este DNA estranho, amplificando sequências não pretendidas.


DNA Fingerprint

  • No genoma humano existem sequências de DNA repetitivas que são reconhecidas e cortadas por determinadas enzimas de restrição. Estas enzimas dividem o DNA em fragmentos cujas dimensões e composição em nucleótidos variam de pessoa para pessoa e reflectem as diferenças entre os alelos dos vários loci.
  • Diferentes fragmentos de DNA movimentam-se de modo diferente quando submetidos a electroforese (técnica em que determinadas moléculas são sujeitas à acção de um campo eléctrico num meio poroso) e o resultado é um padrão de bandas que difere de indivíduo para indivíduo.


Aplicações das Técnicas de Engenharia Genética


  • DNA recombinante(DNAr):
      • Investigação fundamental: torna possível isolar genes de organismos complexos e estudar as suas funções a nível molecular.
      • Obtenção de OGM: os OGM são organismos em cujo genoma foram introduzidos genes que conferem características vantajosas. Os OGM
          • Os animais transgénicos, normalmente, são produzidos através de microinjecção de DNA de um determinado gene em células de um ovo fertilizado, ou através de células colocadas no útero de uma fêmea, decorrendo assim o seu desenvolvimento.
          • Os OGM são utilizados para:
            • produção de alimentos em maior quantidade e qualidade;
            • produção de grandes quantidades de substâncias com aplicação médica ou farmacêutica, como a insulina, hormona do crescimento ou factores de coagulação sanguínea;
            • produção de substâncias com aplicação industrial;
            • biorremediação – modificação de organismos no sentido de degradarem poluentes.

  • DNA complementar (DNAc):
      • Obtenção de cópias de genes que codificam produtos com interesse – torna possível a produção de proteínas humanas por procariontes que podem ser cultivados facilmente em biorreactores.

  • PCR:
      • Obtenção de grandes quantidades de DNA em pouco tempo, a partir de uma quantidade muito pequena. Esse DNA pode ser posteriormente utilizado em técnicas de recombinação de DNA ou em fingerprint.


  • DNA fingerprint:
      • Investigação criminal, forense e histórica – a técnica permite partir de material biológico deixado num local (cabelo, sangue, esperma...) e compará-lo com o dos suspeitos; permite a identificação de cadáveres.
      • Determinação de paternidade – a comparação das impressões digitais genéticas dos progenitores e do descendente permite excluir a paternidade ou confirmá-la com um elevado grau de certeza.


  • Há alguns obstáculos na expressão de genes eucariontes em bactérias.
      • Deve associar-se o gene às sequências promotoras e reguladoras mais apropriadas e que possam ser reconhecidas pela RNA polimerase da bactéria (as zonas de regulação da expressão génica em procariontes são diferentes dos eucariontes).
          • A resolução deste problema pode ser obtida pela combinação de uma determinada sequência nucleotídica com um promotor da própria bactéria, permitindo a expressão da sequência eucarionte inserida.
      • Quando se transferem genes para uma bactéria, é aconselhável que o DNA transferido já esteja processado, uma vez que as bactérias hospedeiras não possuem enzimas para o processamento e remoção dos intrões, introduzindo uma cópia de DNAc do gene.

  • A utilização e introdução no mercado dos OGM é um assunto controverso e que levanta problemas éticos. Apesar das vantagens associadas a estes organismos, o impacto que podem vir a ter sobre o ambiente e a saúde humana é desconhecido e imprevisível.


Cancro

O carco é uma doença genética que resulta da perda de controlo do ciclo celular. A divisão de uma célula com mais frequência do que o normal dá origem a uma população de células em proliferação descontrolada e forma uma massa de células, ou tumor.


As células cancerosas têm as seguintes características:
  • São pouco especializadas e com forma arredondada;
  • dividem-se continuamente;
  • invadem os tecidos adjacentes;
  • Podem instalar-se noutros locais do organismo, onde chegam através da corrente sanguínea ou linfática, originando novos tumores que se chamam metástases.
 - Os cancros surgem devido a mutações em proto-oncogenes, que se transformam em oncogenes, ou em genes supressores de tumores. Estes genes codificam produtos que controlam o ciclo celular.


*1Os proto-oncogenes codificam proteínas que estimulam o crescimento e a divisão celular e têm uma função essencial nas células normais, por exemplo, durante o desenvolvimento embrionário e na reparação de tecidos lesados. Quando indevidamente activados, promovem uma proliferação celular excessiva que conduz ao desenvolvimento de um cancro.

*2Os produtos destes genes inibem a divisão celular. A perda destes genes ou a diminuição da sua actividade contribui para o aparecimento de cancro

*3 As mutações nestes genes permitem a acumulação de outras mutações, algumas das quais em proto-oncogenes ou genes supressores de tumores.

Mutações

Mutações - Sao alterações bruscas e permanentes ao nível do genoma do indivíduo e podem afectar apenas um gene ou muitos genes, alterando porções de cromossomas ou mesmo cromossomas completos.

Mutações génicas: Alteram a sequência de nucleótidos do DNA, por substituição, adição ou remoção de bases. Estas mutações podem conduzir à modificação da molécula de mRNA que é trascrita a partir do DNA e, consequentemente, à alteracao da proteína produzida. A alteração de uma proteína tem, geralmente, efeitos no fenótipo.

Mutações cromossómicas: Traduzem-se numa alteração da estrutura ou do número de cromossomas. Podem afectar uma determinada região de um cromossoma, um cromossoma inteiro ou todo o complemento cromossómico de um indivíduo.

Agentes mutagénicos - Aumentam a probabilidade de ocorrência de mutações e podem ser substâncias químicas ou radiações. Os principais agentes mutagénicos sao os seguintes:
  • Fontes naturais de radiação como raios cósmicos, luz solar e minerais radioactivos da crosta terrestre.
  • Raios X e outras radiações utilizadas em medicina nuclear. provocam a deleção de algumas bases ou quebram os cromossomas;
  • Substâncias químicas, como agentes aquilantes, acridinas, drogas usadas em quimioterapia, nitrosaminas e nitrito de sódio.



*Mutações podem ser induzidas ou espontâneas.